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Forecasting tourism demand for multiple tourist attractions on an hourly basis provides impor-
tant insights for effective and efficient management, such as staffing and resource optimization.
However, existing forecasting models are not well equipped to hand the hourly data, which is
dynamic and nonlinear. This study develops an improved, artificial intelligent-based model,
known as Correlated Time Series oriented Long Short-Term Memory with Attention Mecha-
nism, to solve this problem. The validity of the model is verified through a forecasting exercise
for 77 attractions in Beijing, China. The results show that our model significantly outperforms
the baseline models. The study advances the tourism demand forecasting literature and offers
practical implications for resource optimization while enhancing staff and customer
satisfaction.
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Introduction

Accurate demand forecasting enables tourism organizations to properly arrange resources in advance to serve the demand
(Jiao et al., 2020; Song & Li, 2008). Numerous forecasting models have been suggested and tested (Bi et al., 2020), including
econometric models, time series models, and artificial intelligence (AI) models (Jiao & Chen, 2019). Despite the rapid progress
in tourism demand forecasting research in recent years, many issues remain (Huang et al., 2019).

First, most existing models aim at relatively long time spans, such as monthly and annual forecasting (Alvarez Diaz & Mateu-
Sbert, 2011; Bi et al., 2020; Divino & McAleer, 2010). However, for daily operations, finer time granularity and higher frequency
tourism demand forecasting are required. For example, based on the hourly tourism demand forecasting results, tourist attraction
managers can formulate effective real-time crowd management strategies, and optimize staff and resource arrangements (Song &
Li, 2008; Wu et al., 2017). Hourly data is more dynamic and non-linear than other granular data (e.g., monthly, quarterly, or an-
nual tourist arrivals) (Pereira & Nobre, 2016; Yang et al., 2014), making the forecasting more challenging. To date, little research
has been devoted to hourly demand forecasting.

Second, most existing studies focus on the prediction of tourism demand for a single entity, e.g., a tourism destination (Assaf
et al., 2019; Li & Law, 2020; Song et al., 2019), a tourist attraction (Bi et al., 2020; Li et al., 2020), or a hotel (Assaf & Tsionas, 2019;
Yang et al., 2014), rather than multiple ones. Tourist attractions in a destination are geographically connected and tourists prefer
multi-attraction visits; as such, supply interactions occur between attractions (Jiao & Chen, 2019; Long et al., 2019; Yang & Wong,
2012). Therefore, incorporating spatial information could potentially improve the accuracy of forecasting (Long et al., 2019;
Stewart & Vogt, 1997; Yang & Zhang, 2019). Empirical research on this issue has not appeared until recently (Jiao et al., 2020).
The few studies that consider the spatial effect are still based on the traditional time series model (Jiao et al., 2020; Yang &
heng), huangly@stu.xmu.edu.cn. (L. Huang).
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Zhang, 2019) or the econometric model (Emili et al., 2020; Long et al., 2019). However, these traditional models are unsuitable for
handling nonlinear patterns and exogenous variables (Jiao & Chen, 2019).

This study aims to narrow the gaps in the demand forecasting literature by developing an improved AI-based model, known as
the Correlated Time Series oriented Long Short-Term Memory with Attention Mechanism (CTS-LSTM-AM), to solve the research
problem. The model compensates for the lack of spatial dependence characteristics between sequences extracted by LSTM (Wan
et al., 2020) and could perfectly fit into tourism demand forecasting (Law et al., 2019). The validity of the model is verified
through its application to forecasting the hourly visitor numbers for 77 attractions in Beijing, China.

The main contribution of the present study is the development of an improved model that incorporates spatial effects. Fore-
casting the demand of multiple tourist attractions with spatial effect from the hourly granularity is challenging because the hourly
data is dynamic and nonlinear (Höpken, Eberle, Fuchs, & Lexhagen, 2021), and intra-sequence time and inter-sequence space de-
pendencies should be captured for forecasting (Wan et al., 2020). This study improves the architecture of LSTM and expands the
application of AI-based models in demand forecasting. The proposed model expands demand forecasting literature by focusing on
hourly granularity, and such an approach is particularly helpful for managers' decision-making.

Literature review

Tourism demand forecasting

Tourism demand forecasting is a research hotspot with highly practical implications (Song et al., 2012), and various models
have been proposed to advance forecasting accuracy in the past few decades. The most commonly used models are econometric
and time series models (Jiao & Chen, 2019). Based on historical data, time series models can figure out the trends, and then pre-
dict the future (Song & Li, 2008). Econometric models can forecast demand by identifying tourist arrival relevant factors (Cao
et al., 2017; Pan & Yang, 2017; Song & Wong, 2003). These models require advanced diagnosis and fixed time lag to realize
the prediction. However, the time dependence may change, which suggests that the above models might not make full use of
the time dependence of time series (Bi et al., 2020).

Recently, AI-based models have gained popularity, and a variety of models have been designed, including artificial neural net-
works (ANN), fuzzy time series, grey theory, support vector machines, rough sets approach, and hybrid models (Jiao et al., 2020).
These traditional AI-based models have several weaknesses. First, with the increase of data frequency, handling the data becomes
very challenging for these models, due to the non-stationarity, seasonality, and complexity of the data (Yang et al., 2014). Second,
these traditional models cannot easily learn the tourist flow time series' long-term dependency (Bi et al., 2020). Third, they cannot
automatically extract the data features and often encounter problems of overfitting or local optima (Zhang, Li, Muskat, & Law,
2021; Zhang, Li, Shi, & Law, 2020). Comparatively, deep learning techniques have the capability to extract discriminative features
without the need for much human effort and domain knowledge (Pouyanfar et al., 2019). Research based on deep learning
methods is becoming popular, among which LSTM is a typical one (Bi et al., 2020; Law et al., 2019). For instance, Law et al.
(2019) put forward a deep network architecture to forecast tourist arrivals in Macau, demonstrating the superiority of this ap-
proach over traditional ones. Bi et al. (2020) incorporate multivariate time series data into the LSTM network, further improving
forecasting performance.

However, the use of LSTM in tourism demand forecasting still presents several challenges, e.g., the deficiency of information
processing (Kulshrestha et al., 2020), model overfitting, and high complexity (Zhang, Li, Muskat, & Law, 2021; Zhang, Li,
Muskat, Law, & Yang, 2020). Thus, several scholars have attempted to improve the forecasting performance by improving LSTM
to address the challenge. Kulshrestha et al. (2020) proposed a variant of LSTM, namely, Bayesian Bidirectional LSTM (BBiLSTM),
to predict quarterly tourist arrivals. In their model, either backward or forward information can be utilized, and the
hyperparameters can be optimized. Zhang et al. have also done considerable constructive work: they incorporated the group-
pooling method into LSTM structure to predict the tourist arrival volumes (Zhang, Li, Muskat, Law, & Yang, 2020); and introduced
a decomposed deep learning approach that combines trend and seasonal decomposition through the Loess and duo attention
layer structure (Zhang, Li, Muskat, & Law, 2021).

Spatial effects in tourism demand

Spatial effects, including spatial spillover and spatial heterogeneity, have been well examined in previous studies (Balli et al.,
2015; Li et al., 2016; Yang & Fik, 2014). Spatial dependence and regional interactions are important areas of research in tourism
geography and economics (Fingleton & López-Bazo, 2006), particularly in regional tourism growth (Ma et al., 2015; Zhang et al.,
2011) and destination tourism flows (Yang & Fik, 2014; Yang & Wong, 2012).

The spillover effect is mainly a result of multi-destination tourism (Yang, Fik, & Zhang, 2017). As an economic externality, spa-
tial spillovers may occur through the sharing of common infrastructure and resources, collaboration or competition among desti-
nations, or various events that happened in the area (Chhetri et al., 2013). Spatial proximity and attraction compatibility help
drive the spillover effects in tourist flow from one attraction or destination to another (Weidenfeld, Butler, & Williams, 2010), be-
cause tourists generally visit multiple attractions or destinations in a single trip (Santos et al., 2011). Empirical evidence has con-
firmed the spillover effects. For example, Balli et al. (2015) reveal the spillovers of tourism demand from three main hubs to other
regions in the country. Gooroochurn and Hanley (2005) found the spiller overs of tourism demand between the two main regions
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in the Irish island are significant. Cao et al. (2017) showed evidence to support the tourism demand interdependence across coun-
tries. More recently, Assaf et al. (2019) reported the spillovers of international tourism demand in nine Southeast Asian countries.

Due to each location's unique characteristics, spatial heterogeneity is associated with spatial differentiation that is due to each
location's unique characteristics. It reflects the differences between regions (Zhang et al., 2011). These differences can be reflected
in the distributions and means of a set of variables and their variance and covariance. For instance, the various geographic regions
in China have large heterogeneity in terms of history, culture, and economic growth (Lin et al., 2018). Using panel data, Li et al.
(2016) revealed the tourism income inequality between different regions in China. Examining the environmental characteristics
and historical evolution of places in Italy, Considering the social, economic and cultural, economic diversity of Spain, Cotos-
Yáñez et al. (2018)) revealed the geographic heterogeneity in senior tourists' travel patterns.

Previous researches on identifying spatial spillover and spatial heterogeneity have provided important insights for tourism de-
velopment (Capone & Domenech, 2008; Khadaroo & Seetanah, 2008). However, research on incorporating spatial effects into fore-
casting models is at an early stage. Only four recent studies have taken into account the spatial effects. Specifically, Yang and
Zhang (2019) used dynamic spatial panel models and STARMA. Long et al. (2019) adopted the pooled ordinary least squares
model by incorporating spatial and temporal effects. Emili et al. (2020) used a dynamic panel model through the difference Gen-
eralized Method of Moments estimation approach. Jiao et al. (2020) further extended the basic ARIMA model and applied spatial
lag in response variables and moving average terms.

Despite the advances made by the recent studies (Emili et al., 2020; Jiao et al., 2020; Long et al., 2019; Yang & Zhang, 2019),
the extant literature of tourism demand forecasting considering spatial effect has several limitations. First, the spatial-temporal
models adopted in these studies rely on time series (Jiao et al., 2020; Yang & Zhang, 2019) or econometric models (Long et al.,
2019), which cannot easily adequately capture nonlinear patterns and exogenous variables (Jiao & Chen, 2019). Second, these
studies focus on long-term forecasting of relatively large areas, whereas very few models forecast tourism demand at the attrac-
tion level at a short time scale, such as hourly. Thus, this study attempts to advance the field by proposing a new model that can
capture temporal and spatial dependencies and simultaneously predict the demand of multiple tourist attractions within a desti-
nation from hourly granularity.

Proposed model

Architecture of standard LSTM

As an improved version of traditional neural networks, recurrent neural networks (RNN) have good performance in dealing
with timing prediction problems due to their ability to capture the time correlation between events that are far apart in the se-
quence (Li & Law, 2020). However, RNN has inherent problems, such as vanishing gradients or exploding ones, when capturing
the long-term dependence of time series (Wan et al., 2020; Xu et al., 2018).

LSTM networks, first proposed by Hochreiter and Schmidhuber (1997), are capable of learning long-term dependencies, over-
coming RNNs' inherent problems. LSTM networks remember information for long durations and run well to solve many different
practical problems (Bi et al., 2020). Unlike RNNs, but the LSTM networks have four layers of chain structure: a memory cell and
three basic structures named “gates” (forget, input, and output gates) to realize the protection and control of information (shown
in Fig. 1). The gate allows selective passage of information, largely through a point-by-point multiplication operation. First, the
forget gate (σf) determines the removal of specific cell state information. The information source of the forget gate is the hidden
layer vector at time t-1 (ht-1) and the time series information at time t (xt) (Xu et al., 2018). Second, the input gate (σi) decides
the addition of new information to the cell state, which involves an input gate layer and a tanh level. The tanh level is used as an
excitation function to determine the increase or decrease of information (Wan et al., 2020). According to the cell state, the output
gate (σo) controls the output information. Finally, we get the hidden layer vector (ht) and the cell state of the current time (Ct).
For more details of LSTM, please refer to Law et al. (2019) and Bi et al. (2020).

Architecture of CTS-LSTM-AM

The tourist attractions in a destination are geographically connected. They may demonstrate strong relevance of tourism de-
mand given the competitive and cooperative relations between attractions (Jiao & Chen, 2019; Long et al., 2019; Yang & Wong,
2012). The time series of tourism demand in attractions are influenced and dependent on each other, which can be denoted as
correlated time series. Therefore, to improve the forecasting performance, attention should be paid to the correlated time series
of tourists' attractions in the destination rather than a single time series of an attraction. However, in correlated time series,
the conventional LSTM is unable to capture the spatial-temporal features fully (Wan et al., 2020). In addition, LSTM cannot
learn the importance of different input elements in the same time series.

To deal with these challenges, inspired by the study of Wan et al. (2020) and Law et al. (2019), this study proposed a novel AI-
based model named CTS-LSTM-AM. This model adds an attention mechanism on the original CTS-LSTM proposed by Wan et al.
(2020) to distinguish the differences in the impact of different input elements in the same time series on the prediction perfor-
mance, thus making it better adapted to the scenario of tourism demand forecasting. In other words, in addition to the ability of
CTS-LSTM that can simultaneously capture inter-sequence space dependencies and intra-sequence dependencies in time series,
our model is able to disregard irrelevant information and as a result, it is highly interpretable. Fig. 2 illustrates the architecture
3



Fig. 1. Network structure of LSTM.

W. Zheng, L. Huang and Z. Lin Annals of Tourism Research 90 (2021) 103271
of our model, with three paramount modules: attention mechanism, spatio-temporal cells (ST-cell), and spatio-temporal fusion
(ST-fusion).

We define the input series at time t as xt ∈ ℝμ×N, where μ indicates the number of embedding representation dimensions, and
N denotes the correlated time series in terms of their number. Then, the input matrix xt passes the attention mechanism, which is
to assign different weights to the time steps within the intra-sequence. Subsequently, the ST-cell module is modified based on the
standard LSTM so that it can encapsulate the inter-sequence space and intra-sequence time dependencies in the correlated time
series. ST-fusion is located at the top of the ST-cell module, and its main function is to fuse the information captured by the ST-
cell. Finally, the predicted value of matrix x was obtained, denoted as x̂t . Backpropagation and Adam algorithm are used to train
our network, to reduce the mean square error between the actual matrix xt and the predicted matrix x̂t . Thus, a loss level is in-
troduced to evaluate the forecasting performance.
Attention mechanism
As a feature engineering method, the attention mechanism can be integrated into the model and works along with models

that are LSTM-based. The standard LSTM cannot pay special attention to the important features of the sequence, which can be
compensated by the attention mechanism. This is very important in tourism demand forecasting, because the attention mecha-
nism enables the model to capture the entire flow dynamics in the input sequence and pay attention to factors related to tourism
demand to improve the interpretation of the model (Law et al., 2019). Specifically, in the attention mechanism, the context vector
v from the given time series (X = (x1, x2, …, xi)) is extracted. vt is the weighted sum of each column xi in X, representing infor-
mation related to the present time step. And vt is then incorporated with the current state xt to generate predictions (Shih, Sun, &
Fig. 2. The architecture of CTS-LSTM-AM.
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Lee, 2019). We can formulate this process based on Eq. (1), where ai is the attention weight, which can automatically capture the
correlation between xi and the predicted target x̂i . For more details of the attention mechanism, please refer to Law et al.
(2019).
vt ¼
Xt

i¼1

aixi ð1Þ
Spatio-temporal cell
The spatio-temporal cells are equipped with two channels to obtain the spatial-temporal dependencies. As shown on the left-

hand side of Fig. 3, the intra-sequence cell state captures time dependence, consistent with the conventional LSTM. Similarly, we
define three gates Iintra-t, Fintra-t, Ointra-t to determine the amount of information of each embedded feature contained in each
time series to be retained in the cell state in each time step. As shown in Eqs. (2)–(7), ST-cell basically retains the architecture
of LSTM. Its biggest difference from LSTM is that ST-cell builds a separate representation for each sequence. The advantage of
this is that the update of each cell depends on the characteristics of each sequence, and the information is extracted to the max-
imum.
Iintra t ¼ sigmoid Wi Xintra t ; hintra t−1½ � þ bið Þ ð2Þ
Fintra t ¼ sigmoid W f xintra t ;hintra t−1½ � þ bf

� �
ð3Þ

Ointra t ¼ sigmoid wo xintra t;hintra t−1½ � þ boð Þ ð4Þ

~Cintra t ¼ relu Wc xintra t;hintra t−1½ � þ bcð Þ ð5Þ

Cintra t ¼ Iintra t∘~Cintra t þ Fintra t∘Cintra t−1 ð6Þ

hintra t ¼ Ointra t∘relu Cintra tð Þ ð7Þ
In the right-hand side of Fig. 3, the channel models the inter-sequence spatial effect. The largest difference from the basic LSTM
is that the characterization of each series is reconstructed by fusing the information of all series through the spatial matrix S be-
fore the sequence enters the ST-cell. Here, S ∈ RN×N reflects the paired influence between related series. A fixed matrix can be set
to reflect a domain's knowledge a priori. For example, the geospatial correlated time series S may represent an inter-attraction
similarity or proximity matrix in our case. Specifically, we use the inverse physical distances between attractions to develop an
S matrix. This step enables the representation of each series to include information about the other series, thereby capturing
the interactions between related sequences, that is, the spatial dependencies between sequences. As with the intra-sequence tem-
poral channel, we define three gates Iintra_t, Fintra_t, Ointra_t to determine the amount of information for each embedded feature
within each time series to be retained in the cell state in each time step, using sigmoid as the activation function.
Fig. 3. Architecture of ST-cell.
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Fig. 4. Process of ST-fusion.

W. Zheng, L. Huang and Z. Lin Annals of Tourism Research 90 (2021) 103271
Spatio-temporal fusion
ST-fusion is located at the top of the ST-cells, and its function is to fuse the information obtained in ST-cells. Two tasks are

contained in the fusion module, as shown in Fig. 4. First, the information of intra-sequence temporal channel (hintra_t) and
inter-sequence spatial channel (hinter_t) achieved in ST-cells are assigned different weights. Then, they are fused to obtain the fu-
sion matrix xF_t according to the weights, as shown in Eq. (8). The weights involved in this process are learnable parameters. Sec-
ond, the fusion matrix xF_t is flattened to achieve a new matrix xF_t′, which serves as the input of the fully connected (FC) layer.
Through the FC layer, the spatio-temporal features of the sequences can be better extracted, and the predicted value x̂tþk can be
calculated according to Eq. (9). In this equation, ω represents the weight of xF_t′, b is the bias, ReLU is the activation function, and
“∘” denotes element-wise multiplication.
xF t ¼ w1∘hintra t þw2∘hinter t ð8Þ
� �

x̂tþk ¼ ReLu ω � x0F t þ b ð9Þ
Empirical test

Empirical research was conducted based on tourist attractions in Beijing, the capital of China. Its numerous world-famous tour-
ist attractions attract a large number of international tourists every year (Zhang et al., 2019; Zhang, Yang, Zhang, & Zhang, 2020).
A map of Beijing with the distribution of 77 tourist attractions is shown in Fig. 5.

Data collection and preprocessing

Hourly tourist arrival volumes of tourist attractions in Beijing are available from the Beijing Tourism Network (http://www.
visitbeijing.com.cn/), which provides real-time visitor flow and congestion information of 233 × 2A and above-rated attractions
in the city (5A is the highest rating, based on the tourism attraction classification system in China). The data is updated every
15 min. We collected the data from October 1st, 2020 to October 31st, 2020. Among these 233 attractions, 81 of them were
4A or 5A, 115 are 3A, and the remaining 37 are 2A attractions. Four highly-rated attractions (4A and above) were not open to
the public during this period. Therefore, we focused on the 77 attractions with 4A or 5A ratings, and their distributions are
shown in Fig. 5.

The raw data of 15-minute granularity was transformed into the data of hourly granularity using the average method. Fig. 6
shows the samples of six of these attractions (Summer Palace, The Old Summer Palace, Olympic Forest Park, Prince Gong Mansion,
Forbidden City, and Temple of Heaven). The figure indicates that these time series have different degrees of correlations. We only
used the data from 9:00 to 18:00 every day as the dataset for this study, based on the opening hours of most attractions. We used
Python to predict the time series. By normalizing the zero-mean value of the data, we divided them into training and test
datasets. The 180 samples from October 1st to October 20th were collected to train the model, while another 99 samples from
October 21st to October 31st were used to test the model.

Performance evaluations

Several key parameters such as time step, batch size, and learning rate should be set in advance for training the LSTM net-
works. We used historical data to forecast the hourly demand from 9:00 to 18:00 each day following a window rolling approach.
We set the timestep as 9, based on the period of the most common opening hours of all the attractions. For the selection of batch
size [16, 32, 64, 128, 256, 512] and learning rate [0.1, 0.01, 0.005, 0.001, 0.0005, 0.0001], we determined through an exhaustive
grid method and calculated the RMSE value of each combination (as shown in Fig. 7). The results were as follows: the lighter
the color, the better the prediction effect of the parameter combination. The parameter combination we chose is batch size 64
and learning rate 0.005.

To achieve a better prediction of tourism demand, we focused on the different weights of time steps and the spatial correlation
between attractions. We added the attention mechanism to implement allocate different weights of time steps. Spatial correlation
was obtained by assigning spatial matrix S to sequences, where S is composed of the reciprocal of the geospatial distance between
sequences (Wan et al., 2020). Many traditional LSTM models encounter problems of overfitting, to deal with this problem, our
6
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Fig. 5. Map of Beijing City.

W. Zheng, L. Huang and Z. Lin Annals of Tourism Research 90 (2021) 103271
model adds a dropout regularization in the recurring layer. Dropout regularization refers to the random deletion of input elements
in each update to reduce the possibility of overfitting (Xu et al., 2018). However, the dropout may lead to the randomness of
model training, which makes the results of the model fluctuate (Bi et al., 2020). Therefore, this study obtains the model results
by averaging those over five runs, following the practices used in prior studies (e.g. Bi et al., 2020).

To investigate the model's performance, we used SARIMAX (Tsui & Balli, 2017), ANN (Law, 2000), LSTM (Bi et al., 2020),
LSTM-AM (Law et al., 2019), and CTS-LSTM (Wan et al., 2020) as the baseline models. SARIMAX (p, d, q) (P, D, Q)s is a variant
of the autoregressive integrated moving average (ARIMA) model. Three parameters are involved in SARIMAX: p is the
autoregression order, q represents the moving average's order, and d denotes the number of differences made when time be-
comes stationary; (p, d, q) indicates the model's non-seasonal component, and (P, D, Q) indicates the seasonal component. In
this study, a fully automated procedure provided in R, called auto.arima, was adopted to select the parameters of SARIMAX.
We used an automatic traversal of the parameter combinations to obtain the model with the minimum AIC value. The ANN

model was trained with the back-propagation algorithm to predict y
_

tþ9. Relu was selected as the excitation function, and a
fully connected layer is built in the ANN model. The LSTM model has been widely used in previous studies. Thus, we used this
model as the baseline. To maintain consistency, we set the parameters of LSTM to be the same as those of CTS-LSTM-AM, that
is, learning rate = 0.005, batch size = 64. LSTM-AM is an improved LSTM by adding AM, which enables the model to increase
the explanatory power by focusing on the important features of the time series. The setting was consistent with that of LSTM.
The CTS-LSTM model, proposed by Wan et al. (2020), is capable of capturing the spatial correlation of sequences. Hence, it is
also used as a benchmark model. As with CTS-LSTM-AM, the batch size and learning rate of CTS-LSTM were 64 and 0.005,
respectively.

In this study, the rolling window method was served for the prediction to better imitate reality (Law et al., 2019). Three com-
monly used criteria were used to assess to model performance evaluation, namely, mean absolute deviation (MAE), root mean
square error (RMSE) and mean absolute percentage error (MAPE), as described in Eqs. (10)–(12): where fi is the actual tourism

demand data, f̂ i is the tourism demand to be predicted, and n is the number of test samples. The original normalized data were
restored to calculate the above indicators. A smaller value indicates a better performance. Even if the operating hours of most
7
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Fig. 7. The values of RMSE concerning different parameter combinations.
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attractions were selected for forecasting, there were still situations where the demand for some attractions is 0. Therefore, in
order to accurately calculate the MAPE value, we added 1 for the demand of all attractions before forecasting.
MAE ¼ 1
n

Xn
i¼1

j f i− f̂ i j ð10Þ
RMSE ¼ 1
n
∑
n

i¼1
f i− f̂ i
��� ���2

� �1
2

ð11Þ

MAPE ¼ 1
n

Xn
i¼1

j f i− f̂ i
f i

j ð12Þ
Results

Model performance test
Using the obtained parameters, the CTS-LSTM-AM model was first trained using a training sample set. The hourly tourist vol-

ume from October 21st to October 31st, 2020 was then forecasted. In accordance with the optimal parameters, the 99 samples
were forecasted using our model and five baseline models (SARIMAX, ANN, LSTM, LSTM-AM, and CTS-LSTM), respectively. The
discrepancy between the predicted and actual tourism volume of the 77 attractions obtained by the six models is presented in
Fig. 8, where the color and the degree of deviation from the 0-horizontal plane reflect the discrepancy between the predicted
and actual volume. The MAE/RMSE/MAPE values for each attraction obtained by these six models are shown in Fig. 9.

The average MAE/RMSE/MAPE values of each model are presented in Table 1 and the MAE/RMSE/MAPE values of each attrac-
tion are presented in Appendix 1. The results show that the CTS-LSTM-AM model achieved minimal errors compared with the
baseline models. The precision of MAPE drops from 0.388 to 0.186, which is a significant achievement.

We used Diebold-Mariano (DM) test to assess whether there were statistically significant differences between the new model
and the baseline models. The DM method (Diebold & Mariano, 2002) is widely used in the studies of tourism demand forecasting
(Bangwayo-Skeete & Skeete, 2015; Kulshrestha et al., 2020). Its null hypothesis is that two models have the same predictive
power. Thus, a pairwise comparison between our model and the baseline model was performed. The results were all negative
(see Appendix 2), indicating that the CTS-LSTM-AM achieved better prediction performance than all the baseline models. Specif-
ically, our model outperforms ANN in all (100%) attractions, SARIMAX in 99% of the attractions (i.e., 76 out of 77), LSTM in 97% of
the attractions (i.e., 75 out of 77), LSTM-AM in 95% of the attractions (i.e., 73 out of 77), and CTS-LSTM in 71% of the attractions
(i.e., 55 out of 77).

Model discussion
There is a spatial effect in tourism demand due to the interaction of supply with neighboring areas (Long et al., 2019; Yang &

Zhang, 2019). Therefore, our model considers the spatial effect by introducing correlated time series and attention mechanisms.
9



Fig. 8. Difference comparison between models.
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To verify whether the consideration of spatial effect can improve forecasting performance, a baseline model was introduced for
comparison. Compared with our model, this baseline model did not consider the demand series of the 76 other tourist attractions
when forecasting the demand of an attraction. The prediction results of the two models are shown in Fig. 10, which indicates the
discrepancy between the predicted and actual tourism volume of the 77 attractions. The mean values of MAE, RMSE and MAPE of
the baseline model are 0.104, 0.068 and 0.452. The forecast accuracy of MAPE is 0.452, which is significantly larger than that of
our model (0.186). Similarly, we further utilized the DM test to compare the two models' predictive accuracy (see the seventh
column of Table A2-1 in Appendix 2). The results suggest that our proposed model is statistically better than the baseline
10



Fig. 9. MAE, RMSE, and MAPE comparison between models.
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model in 99% of the attractions (i.e., 76 out of 77), which confirms that considering spatial effects in the model helps to improve
the forecasting performance.

To further verify the model's robustness, we made detailed observations on the prediction results under different prediction
time intervals. We selected the time intervals of 1 h, 3 h, and 6 h for comparative experiments. The MAPE values of the six models
at different time intervals are shown in Fig. 11. The different line colors represent different models. The results demonstrate that
our method outperforms all baseline models at different forecasting time intervals, confirming that our model has good robust-
ness. Moreover, for all the six models, when the time interval was set as 9 h, its forecasting performance was better than the
other three time intervals, confirming that setting the time interval to 9 h in the above analysis was appropriate.

Conclusion

This study addresses the challenges of forecasting hourly tourist arrivals in multiple tourist attractions. Our proposed model
uses the spatial effect via correlated time series and attention mechanism to the forecasting model to simultaneously forecast
the tourist volume for multiple attractions in a destination. The empirical test shows that our model outperforms the baseline
models. Previous studies often only target the demand forecast of a single area, such as a single attraction or a single tourist
Table 1
Average of MAE, RMSE and MAPE for each model.

SARIMAX ANN LSTM LSTM-AM CTS-LSTM CTS-LSTM-AM

MAE 0.283 0.314 0.122 0.100 0.058 0.053
RMSE 0.301 0.334 0.153 0.110 0.075 0.071
MAPE 0.534 0.607 0.364 0.353 0.275 0.186
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Fig. 10. Forecasting performance comparison.
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destination. Our study considers the time series of a tourist attraction and that of other attractions in the destination; thus, the
model simultaneously forecasts the demand of multiple attractions. Moreover, the extant studies mainly focus on long-term
and mid-term forecasts. Short-term forecasts were relatively few. The major challenges are a) short-term data are more difficult
to obtain and b) short-term data are more complex, with greater nonlinearity and randomness. Our proposed model effectively
handles hourly data.

This study has several contributions. First, we advance the demand forecasting literature by proposing a model that captures
both intra-sequence time and inter-sequence space dependencies, which have not been adequately addressed in prior studies.
Second, we improve the architecture of LSTM and expand the application of the AI-based model, which can be widely applied
with the capability to accommodate additional predicting variables. Two major improvements have been made: a) We consider
correlated time series in LSTM to handle the historical demand data of multiple tourist attractions in a destination. b) We intro-
duce an attention mechanism that can evaluate the importance of different elements of a time series so different weights are de-
termined for different elements. Third, we further advance the demand forecasting field by presenting a model that is well
Fig. 11. Forecasting performance comparison for different time intervals.
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equipped to handle the dynamic and non-linear characteristics of hourly data, thus providing finer granularity in the forecasting
performance.

Our research also has practical implications. First, the model proposed in this study helps destination managers to perform
micro-level forecasts based on high-frequency data, and to improve their resource planning and daily operation efficiency, thereby
achieving higher levels of staff and tourist satisfaction. Second, the empirical results support that considering spatial effects can
positively influence tourism demand forecasts. This suggests that destination managers should consider the spatial relevance be-
tween attractions in their planning and marketing. For example, attractions that are closely relevant and complementary with
each other can be clustered together for joint promotion, while attractions that compete with each other with similar appeals
can be repositioned.

One of the limitations of the study is our model's reliance on historical data. Future studies should consider several other var-
iables that are not captured in our data, for instance, the data of search index (Yang et al., 2014) and weather (Bi et al., 2020). The
data used in the study is based on short time intervals, which suits our research aims, however, tourism demand is highly influ-
enced by seasonality (Xie et al., 2020), future studies may take seasonality into account by using longer interval tourist data to
improve forecasting performance.
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Appendix 1. The MAE/RMSE/MAPE values of each attraction
Table A1-1
MAE values of each attraction.

Attractions SARIMAX ANN LSTM LSTM-AM CTS-LSTM CTS-LSTM-AM

1 1.240 3.541 1.125 0.843 0.530 0.452
2 0.004 0.001 0.012 0.020 0.003 0.004
3 0.109 0.084 0.053 0.049 0.028 0.025
4 0.925 0.859 0.268 0.199 0.088 0.091
5 0.004 0.001 0.016 0.024 0.003 0.004
6 0.200 0.111 0.051 0.045 0.031 0.028
7 0.060 0.070 0.055 0.058 0.030 0.022
8 0.004 0.040 0.019 0.015 0.003 0.004
9 0.266 0.613 0.156 0.105 0.080 0.082
10 0.021 0.001 0.028 0.035 0.012 0.012
11 0.070 0.172 0.067 0.078 0.047 0.042
12 0.361 0.274 0.138 0.113 0.074 0.064
13 0.406 0.094 0.115 0.128 0.050 0.043
14 0.036 0.035 0.061 0.056 0.015 0.015
15 0.216 0.171 0.079 0.031 0.025 0.024
16 0.115 0.310 0.131 0.107 0.080 0.072
17 0.310 0.162 0.088 0.082 0.063 0.067
18 0.382 0.165 0.162 0.110 0.054 0.055
19 2.181 2.475 0.816 0.730 0.470 0.447
20 0.005 0.001 0.019 0.026 0.007 0.008
21 0.328 0.338 0.157 0.111 0.077 0.078
22 0.440 0.488 0.189 0.228 0.108 0.094
23 0.319 0.063 0.117 0.082 0.061 0.052
24 0.005 0.039 0.014 0.016 0.004 0.003
25 0.921 0.965 0.250 0.201 0.232 0.224
26 0.122 0.578 0.207 0.123 0.075 0.085
27 0.048 0.091 0.038 0.040 0.022 0.022
28 0.993 0.836 0.267 0.187 0.090 0.092
29 0.016 0.042 0.034 0.034 0.012 0.011
30 0.046 0.083 0.050 0.044 0.048 0.041
31 0.128 0.001 0.048 0.053 0.024 0.022

(continued on next page)
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Table A1-1 (continued)

Attractions SARIMAX ANN LSTM LSTM-AM CTS-LSTM CTS-LSTM-AM

32 0.365 0.577 0.149 0.075 0.067 0.062
33 0.096 0.107 0.051 0.062 0.029 0.022
34 0.004 0.001 0.011 0.020 0.003 0.003
35 0.960 0.764 0.211 0.129 0.108 0.091
36 0.550 0.102 0.133 0.088 0.062 0.056
37 0.021 0.001 0.021 0.025 0.009 0.010
38 1.002 0.884 0.267 0.207 0.093 0.088
39 0.032 0.001 0.024 0.028 0.010 0.008
40 0.004 0.001 0.012 0.013 0.003 0.004
41 0.004 0.036 0.016 0.019 0.003 0.004
42 0.033 0.031 0.028 0.020 0.007 0.008
43 0.007 0.059 0.018 0.012 0.005 0.005
44 0.020 0.045 0.043 0.047 0.016 0.014
45 0.109 0.117 0.040 0.049 0.016 0.014
46 0.100 0.108 0.077 0.078 0.045 0.031
47 0.151 0.186 0.128 0.113 0.074 0.059
48 1.023 0.345 0.259 0.223 0.165 0.149
49 0.062 0.122 0.032 0.028 0.019 0.019
50 0.357 0.918 0.274 0.216 0.090 0.086
51 0.112 0.379 0.156 0.113 0.077 0.080
52 0.004 0.026 0.016 0.018 0.003 0.004
53 0.026 0.103 0.024 0.030 0.009 0.009
54 0.563 0.651 0.171 0.090 0.085 0.079
55 0.495 0.211 0.158 0.100 0.055 0.056
56 0.528 0.318 0.206 0.136 0.077 0.086
57 0.005 0.001 0.016 0.019 0.003 0.004
58 0.127 0.171 0.062 0.067 0.029 0.035
59 0.015 0.080 0.038 0.030 0.011 0.011
60 0.008 0.001 0.020 0.023 0.006 0.005
61 0.031 0.087 0.040 0.034 0.022 0.023
62 0.452 0.567 0.155 0.114 0.077 0.078
63 0.918 0.775 0.239 0.302 0.156 0.121
64 0.889 0.648 0.267 0.192 0.089 0.085
65 0.198 0.126 0.061 0.072 0.033 0.036
66 0.019 0.034 0.020 0.020 0.007 0.006
67 0.057 0.001 0.049 0.040 0.016 0.014
68 0.189 0.269 0.168 0.159 0.075 0.066
69 0.564 0.601 0.149 0.114 0.055 0.054
70 0.109 0.080 0.090 0.115 0.040 0.029
71 0.010 0.079 0.021 0.024 0.009 0.009
72 0.253 0.121 0.085 0.073 0.046 0.044
73 0.264 0.294 0.093 0.067 0.050 0.049
74 0.028 0.001 0.031 0.023 0.007 0.008
75 0.379 0.561 0.166 0.094 0.055 0.057
76 0.011 0.001 0.019 0.016 0.003 0.003
77 0.329 0.899 0.252 0.189 0.092 0.078

Table A1-2
RMSE values of each attraction.

Attractions SARIMAX ANN LSTM LSTM-AM CTS-LSTM CTS-LSTM-AM

1 1.599 3.695 1.458 1.169 0.728 0.658
2 0.000 0.001 0.016 0.027 0.004 0.005
3 0.124 0.108 0.065 0.060 0.038 0.034
4 0.935 0.869 0.317 0.239 0.119 0.129
5 0.000 0.001 0.019 0.030 0.004 0.004
6 0.204 0.123 0.065 0.055 0.038 0.035
7 0.069 0.103 0.075 0.084 0.042 0.028
8 0.000 0.055 0.025 0.021 0.004 0.004
9 0.293 0.623 0.198 0.153 0.108 0.113
10 0.024 0.001 0.035 0.042 0.014 0.014
11 0.089 0.188 0.082 0.105 0.059 0.054
12 0.396 0.328 0.184 0.151 0.095 0.082
13 0.408 0.120 0.147 0.147 0.061 0.054
14 0.044 0.045 0.079 0.073 0.020 0.022
15 0.236 0.187 0.113 0.040 0.031 0.030
16 0.133 0.353 0.161 0.132 0.098 0.087
17 0.318 0.196 0.110 0.100 0.078 0.080
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Table A1-2 (continued)

Attractions SARIMAX ANN LSTM LSTM-AM CTS-LSTM CTS-LSTM-AM

18 0.445 0.203 0.195 0.138 0.065 0.065
19 2.313 2.559 1.005 0.899 0.615 0.572
20 0.004 0.001 0.025 0.033 0.009 0.009
21 0.352 0.367 0.196 0.158 0.106 0.106
22 0.497 0.541 0.238 0.325 0.154 0.135
23 0.329 0.087 0.144 0.110 0.079 0.071
24 0.000 0.048 0.020 0.020 0.005 0.004
25 0.976 1.030 0.326 0.262 0.281 0.276
26 0.156 0.595 0.255 0.151 0.095 0.107
27 0.059 0.110 0.046 0.050 0.028 0.028
28 1.001 0.856 0.321 0.217 0.120 0.126
29 0.019 0.051 0.042 0.041 0.015 0.014
30 0.068 0.103 0.059 0.065 0.059 0.052
31 0.131 0.001 0.067 0.063 0.028 0.026
32 0.378 0.584 0.198 0.101 0.084 0.078
33 0.118 0.124 0.071 0.089 0.041 0.029
34 0.000 0.001 0.014 0.024 0.004 0.004
35 0.966 0.774 0.277 0.239 0.131 0.112
36 0.558 0.129 0.170 0.115 0.075 0.073
37 0.024 0.001 0.029 0.029 0.012 0.013
38 1.010 0.895 0.319 0.244 0.124 0.126
39 0.038 0.001 0.030 0.039 0.014 0.011
40 0.000 0.001 0.015 0.017 0.004 0.004
41 0.000 0.046 0.020 0.025 0.004 0.005
42 0.039 0.040 0.037 0.025 0.010 0.010
43 0.000 0.076 0.028 0.015 0.006 0.006
44 0.025 0.057 0.068 0.056 0.020 0.018
45 0.118 0.127 0.050 0.069 0.024 0.020
46 0.130 0.130 0.102 0.117 0.059 0.039
47 0.171 0.229 0.159 0.160 0.098 0.082
48 1.050 0.385 0.311 0.280 0.206 0.192
49 0.067 0.147 0.038 0.038 0.026 0.026
50 0.382 0.931 0.319 0.249 0.119 0.120
51 0.150 0.429 0.201 0.158 0.105 0.108
52 0.000 0.034 0.025 0.021 0.004 0.005
53 0.028 0.119 0.029 0.035 0.011 0.011
54 0.573 0.664 0.230 0.172 0.108 0.099
55 0.501 0.241 0.189 0.125 0.067 0.067
56 0.541 0.353 0.253 0.165 0.099 0.105
57 0.000 0.001 0.023 0.023 0.004 0.005
58 0.142 0.178 0.082 0.090 0.041 0.046
59 0.017 0.090 0.052 0.034 0.013 0.013
60 0.008 0.001 0.028 0.028 0.008 0.007
61 0.038 0.098 0.047 0.045 0.026 0.028
62 0.469 0.576 0.191 0.165 0.106 0.110
63 0.963 0.831 0.327 0.403 0.208 0.161
64 0.898 0.661 0.315 0.228 0.119 0.122
65 0.203 0.147 0.079 0.094 0.041 0.045
66 0.020 0.045 0.028 0.027 0.009 0.007
67 0.071 0.001 0.066 0.055 0.022 0.019
68 0.250 0.307 0.195 0.190 0.100 0.085
69 0.569 0.606 0.181 0.142 0.067 0.065
70 0.119 0.098 0.112 0.163 0.057 0.040
71 0.008 0.119 0.026 0.029 0.011 0.011
72 0.260 0.140 0.121 0.108 0.058 0.056
73 0.273 0.301 0.109 0.082 0.067 0.067
74 0.031 0.001 0.054 0.031 0.009 0.010
75 0.390 0.568 0.202 0.120 0.067 0.068
76 0.000 0.001 0.036 0.019 0.004 0.005
77 0.350 0.908 0.303 0.231 0.122 0.116

Table A1-3
MAPE values of each attraction (%).

Attractions SARIMAX ANN LSTM LSTM-AM CTS-LSTM CTS-LSTM-AM

1 0.310 0.952 0.303 0.244 0.160 0.152
2 0.154 0.040 0.464 0.795 0.226 0.239

(continued on next page)
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Table A1-3 (continued)

Attractions SARIMAX ANN LSTM LSTM-AM CTS-LSTM CTS-LSTM-AM

3 0.866 0.498 0.352 0.307 0.155 0.166
4 0.897 0.833 0.262 0.19 0.311 0.204
5 0.138 0.031 0.488 0.75 0.181 0.235
6 0.869 0.471 0.222 0.21 0.263 0.240
7 0.512 0.461 0.408 0.492 0.203 0.219
8 0.138 1.224 0.568 0.459 0.469 0.318
9 0.372 0.899 0.232 0.164 0.676 0.224
10 0.462 0.019 0.617 0.565 0.231 0.195
11 0.214 0.542 0.234 0.287 0.411 0.199
12 0.920 0.652 0.367 0.357 0.189 0.195
13 0.881 0.199 0.250 0.286 0.223 0.190
14 0.541 0.531 1.128 1.078 0.452 0.236
15 0.903 0.667 0.320 0.125 0.147 0.136
16 0.232 0.579 0.285 0.249 0.393 0.144
17 0.930 0.452 0.265 0.249 0.182 0.189
18 0.630 0.251 0.258 0.169 0.400 0.182
19 0.740 0.867 0.321 0.309 0.431 0.082
20 0.092 0.019 0.366 0.477 0.486 0.209
21 0.530 0.477 0.233 0.178 0.162 0.141
22 0.810 0.915 0.407 0.488 0.227 0.217
23 0.757 0.175 0.283 0.201 0.150 0.162
24 0.186 1.494 0.544 0.616 0.266 0.216
25 0.867 0.901 0.283 0.246 0.206 0.236
26 0.148 0.740 0.266 0.154 0.245 0.213
27 0.478 0.817 0.333 0.358 0.247 0.259
28 0.964 0.807 0.262 0.181 0.377 0.244
29 0.176 0.466 0.367 0.352 0.346 0.240
30 0.206 0.455 0.234 0.233 0.137 0.199
31 0.850 0.007 0.333 0.349 0.194 0.217
32 0.593 0.899 0.233 0.121 0.391 0.194
33 0.620 0.900 0.413 0.539 0.234 0.207
34 0.138 0.031 0.323 0.604 0.281 0.262
35 0.963 0.765 0.214 0.134 0.223 0.200
36 0.936 0.175 0.237 0.15 0.311 0.104
37 0.438 0.024 0.512 0.55 0.210 0.168
38 0.973 0.859 0.263 0.198 0.273 0.214
39 0.543 0.016 0.383 0.471 0.184 0.155
40 0.138 0.031 0.348 0.385 0.340 0.225
41 0.138 1.105 0.480 0.556 0.243 0.073
42 0.492 0.489 0.463 0.345 0.200 0.112
43 0.205 1.748 0.561 0.351 0.286 0.297
44 0.155 0.352 0.352 0.366 0.112 0.118
45 0.728 0.783 0.278 0.36 0.163 0.144
46 0.315 0.436 0.288 0.289 0.160 0.161
47 0.288 0.289 0.222 0.2 0.111 0.137
48 0.963 0.313 0.260 0.241 0.519 0.142
49 0.468 1.071 0.245 0.242 0.194 0.137
50 0.337 0.888 0.269 0.207 0.362 0.212
51 0.158 0.528 0.234 0.182 0.472 0.277
52 0.138 0.786 0.493 0.542 0.411 0.231
53 0.396 1.753 0.398 0.489 0.399 0.240
54 0.746 0.863 0.229 0.122 0.329 0.154
55 0.786 0.326 0.251 0.153 0.098 0.090
56 0.673 0.398 0.262 0.17 0.122 0.106
57 0.173 0.031 0.493 0.569 0.381 0.302
58 0.478 0.689 0.246 0.301 0.191 0.156
59 0.118 0.592 0.286 0.224 0.101 0.079
60 0.189 0.026 0.564 0.58 0.146 0.127
61 0.204 0.588 0.272 0.235 0.258 0.240
62 0.650 0.834 0.230 0.177 0.430 0.182
63 0.990 0.820 0.284 0.361 0.173 0.174
64 0.862 0.624 0.263 0.183 0.099 0.089
65 0.924 0.601 0.268 0.341 0.177 0.148
66 0.643 1.440 0.873 0.855 0.300 0.184
67 0.957 0.013 0.580 0.438 0.219 0.166
68 0.496 1.438 0.642 0.621 0.267 0.206
69 0.897 0.955 0.238 0.173 0.646 0.253
70 0.697 0.454 0.480 0.701 0.246 0.197
71 0.179 1.321 0.352 0.386 0.399 0.210
72 0.816 0.431 0.299 0.267 0.157 0.159
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Table A1-3 (continued)

Attractions SARIMAX ANN LSTM LSTM-AM CTS-LSTM CTS-LSTM-AM

73 0.854 0.855 0.296 0.22 0.144 0.104
74 0.516 0.019 0.613 0.439 0.327 0.174
75 0.624 0.894 0.268 0.142 0.395 0.201
76 0.475 0.040 0.789 0.682 0.288 0.099
77 0.311 0.874 0.248 0.181 0.454 0.207
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Appendix 2. The Diebold–Mariano test results for each attraction
Table A2-1
Values of the Diebold–Mariano test based on MAE (h = 9).

Attractions CTS-LSTM-AM vs
SARIMAX

CTS-LSTM-AM vs
ANN

CTS-LSTM-AM vs
LSTM

CTS-LSTM-AM vs
LSTM-AM

CTS-LSTM-AM vs
CTS-LSTM

CTS-LSTM-AM vs
baseline

1 −18.045⁎⁎⁎ −15.622⁎⁎⁎ −4.860⁎⁎⁎ −4.725⁎⁎⁎ −0.763 −3.185⁎⁎⁎

2 −29.078⁎⁎⁎ −13.055⁎⁎⁎ −6.870⁎⁎⁎ −6.372⁎⁎⁎ −0.571 −4.794⁎⁎⁎

3 −8.381⁎⁎⁎ −13.717⁎⁎⁎ −8.322⁎⁎⁎ −8.814⁎⁎⁎ −2.200⁎⁎ −6.386⁎⁎⁎

4 −11.854⁎⁎⁎ −9.956⁎⁎⁎ −7.408⁎⁎⁎ −6.548⁎⁎⁎ −3.126⁎⁎⁎ −9.008⁎⁎⁎

5 −18.899⁎⁎⁎ −7.956⁎⁎⁎ −6.391⁎⁎⁎ −6.578⁎⁎⁎ −2.028⁎⁎ −8.080⁎⁎⁎

6 −16.219⁎⁎⁎ −11.126⁎⁎⁎ −4.582⁎⁎⁎ −5.605⁎⁎⁎ −0.182 −5.780⁎⁎⁎

7 −9.375⁎⁎⁎ −8.672⁎⁎⁎ −8.424⁎⁎⁎ −6.625⁎⁎⁎ −4.888⁎⁎⁎ −7.516⁎⁎⁎

8 −31.683⁎⁎⁎ −11.802⁎⁎⁎ −7.461⁎⁎⁎ −8.960⁎⁎⁎ −21.009⁎⁎⁎ −15.206⁎⁎⁎

9 −21.706⁎⁎⁎ −7.702⁎⁎⁎ −8.596⁎⁎⁎ −5.120⁎⁎⁎ −3.233⁎⁎⁎ −4.684⁎⁎⁎

10 −15.876⁎⁎⁎ −8.360⁎⁎⁎ −6.949⁎⁎⁎ −5.326⁎⁎⁎ −4.799⁎⁎⁎ −10.823⁎⁎⁎

11 −7.516⁎⁎⁎ −16.665⁎⁎⁎ −6.694⁎⁎⁎ −7.005⁎⁎⁎ 0.038 −5.236⁎⁎⁎

12 −36.811⁎⁎⁎ −6.754⁎⁎⁎ −8.224⁎⁎⁎ −6.770⁎⁎⁎ −2.372⁎⁎ −5.784⁎⁎⁎

13 −16.784⁎⁎⁎ −36.523⁎⁎⁎ −10.109⁎⁎⁎ −8.463⁎⁎⁎ −21.997⁎⁎⁎ −10.140⁎⁎⁎

14 −24.741⁎⁎⁎ −19.066⁎⁎⁎ −3.769⁎⁎⁎ −5.332⁎⁎⁎ −0.994 −3.355⁎⁎⁎

15 −15.270⁎⁎⁎ −21.615⁎⁎⁎ −5.689⁎⁎⁎ −8.299⁎⁎⁎ −12.998⁎⁎⁎ −13.855⁎⁎⁎

16 −16.289⁎⁎⁎ −26.144⁎⁎⁎ −8.755⁎⁎⁎ −5.326⁎⁎⁎ −25.430⁎⁎⁎ −23.890⁎⁎⁎

17 −15.224⁎⁎⁎ −10.227⁎⁎⁎ −8.494⁎⁎⁎ −6.640⁎⁎⁎ −5.914⁎⁎⁎ −7.240⁎⁎⁎

18 −17.428⁎⁎⁎ −10.204⁎⁎⁎ −13.345⁎⁎⁎ −9.985⁎⁎⁎ −47.705⁎⁎⁎ −20.679⁎⁎⁎

19 −40.179⁎⁎⁎ −6.358⁎⁎⁎ −5.888⁎⁎⁎ −5.554⁎⁎⁎ −10.379⁎⁎⁎ −8.945⁎⁎⁎

20 −17.879⁎⁎⁎ −38.456⁎⁎⁎ −3.081⁎⁎⁎ −5.212⁎⁎⁎ −2.872⁎⁎⁎ −4.575⁎⁎⁎

21 −28.971⁎⁎⁎ −13.040⁎⁎⁎ −5.905⁎⁎⁎ −5.943⁎⁎⁎ −0.877 −5.442⁎⁎⁎

22 −19.704⁎⁎⁎ −36.348⁎⁎⁎ 2.978⁎⁎⁎ −0.663 −0.121 −0.945
23 −21.192⁎⁎⁎ −7.146⁎⁎⁎ −8.656⁎⁎⁎ −7.916⁎⁎⁎ −5.179⁎⁎⁎ −5.115⁎⁎⁎

24 −21.276⁎⁎⁎ −21.047⁎⁎⁎ −2.771⁎⁎ −0.020 −1.024 −19.493⁎⁎⁎

25 −9.671⁎⁎⁎ −10.919⁎⁎⁎ −3.944⁎⁎⁎ −4.979⁎⁎⁎ −2.899⁎⁎⁎ −8.617⁎⁎⁎

26 −5.855⁎⁎⁎ −12.555⁎⁎⁎ −8.799⁎⁎⁎ −6.901⁎⁎⁎ −2.778⁎⁎ −7.548⁎⁎⁎

27 −17.255⁎⁎⁎ −8.958⁎⁎⁎ −10.222⁎⁎⁎ −7.904⁎⁎⁎ −4.237⁎⁎⁎ −8.043⁎⁎⁎

28 −25.998⁎⁎⁎ −14.938⁎⁎⁎ −7.461⁎⁎⁎ −3.888⁎⁎⁎ −3.687⁎⁎⁎ −9.628⁎⁎⁎

29 −17.123⁎⁎⁎ −17.070⁎⁎⁎ −0.967 −1.328 −2.342⁎⁎ −3.979⁎⁎⁎

30 −23.377⁎⁎⁎ −17.472⁎⁎⁎ −4.895⁎⁎⁎ −4.814⁎⁎⁎ 0.096 −21.532⁎⁎⁎

31 −17.168⁎⁎⁎ −8.223⁎⁎⁎ −7.588⁎⁎⁎ −9.073⁎⁎⁎ −7.359⁎⁎⁎ −7.639⁎⁎⁎

32 −12.627⁎⁎⁎ −9.966⁎⁎⁎ −5.158⁎⁎⁎ −5.276⁎⁎⁎ −0.547 −12.894⁎⁎⁎

33 −15.348⁎⁎⁎ −16.324⁎⁎⁎ −5.341⁎⁎⁎ −5.801⁎⁎⁎ −1.643 −7.780⁎⁎⁎

34 −17.123⁎⁎⁎ −13.541⁎⁎⁎ −6.182⁎⁎⁎ −5.596⁎⁎⁎ −0.697 −9.927⁎⁎⁎

35 −4.105⁎⁎⁎ −16.565⁎⁎⁎ −12.272⁎⁎⁎ −9.819⁎⁎⁎ −8.336⁎⁎⁎ −11.769⁎⁎⁎

36 −3.001⁎⁎⁎ −13.310⁎⁎⁎ −9.324⁎⁎⁎ −3.433⁎⁎⁎ −2.899⁎⁎⁎ −5.288⁎⁎⁎

37 −8.480⁎⁎⁎ −12.622⁎⁎⁎ −10.556⁎⁎⁎ −8.250⁎⁎⁎ −2.489⁎⁎ −7.039⁎⁎⁎

38 −14.381⁎⁎⁎ −16.807⁎⁎⁎ −7.294⁎⁎⁎ −5.651⁎⁎⁎ −2.822⁎⁎ −10.172⁎⁎⁎

39 −6.000⁎⁎⁎ −6.855⁎⁎⁎ −7.181⁎⁎⁎ −7.126⁎⁎⁎ −1.706⁎ −12.028⁎⁎⁎

40 −25.711⁎⁎⁎ −15.360⁎⁎⁎ −13.099⁎⁎⁎ −4.673⁎⁎⁎ −16.730⁎⁎⁎ −12.817⁎⁎⁎

41 −20.121⁎⁎⁎ −6.548⁎⁎⁎ −5.813⁎⁎⁎ −4.543⁎⁎⁎ −8.792⁎⁎⁎ −11.922⁎⁎⁎

42 −12.129⁎⁎⁎ −8.072⁎⁎⁎ −4.783⁎⁎⁎ −5.196⁎⁎⁎ −0.535 −10.055⁎⁎⁎

43 −0.245 −19.749⁎⁎⁎ −4.068⁎⁎⁎ −3.531⁎⁎⁎ −0.184 −5.696⁎⁎⁎

44 −22.042⁎⁎⁎ −3.398⁎⁎⁎ −4.421⁎⁎⁎ −4.117⁎⁎⁎ −2.102⁎⁎ −9.216⁎⁎⁎

45 −32.324⁎⁎⁎ −21.336⁎⁎⁎ −5.486⁎⁎⁎ −5.321⁎⁎⁎ −0.253 −11.848⁎⁎⁎

46 −33.981⁎⁎⁎ −25.430⁎⁎⁎ −2.948⁎⁎⁎ −4.157⁎⁎⁎ −2.221⁎⁎ −10.725⁎⁎⁎

47 −33.065⁎⁎⁎ −11.379⁎⁎⁎ −7.881⁎⁎⁎ −5.752⁎⁎⁎ −19.161⁎⁎⁎ −9.255⁎⁎⁎

48 −35.531⁎⁎⁎ −21.368⁎⁎⁎ −9.448⁎⁎⁎ −4.414⁎⁎⁎ −4.313⁎⁎⁎ −20.377⁎⁎⁎

49 −12.090⁎⁎⁎ −6.123⁎⁎⁎ −3.585⁎⁎⁎ −5.941⁎⁎⁎ −5.298⁎⁎⁎ −11.676⁎⁎⁎

50 −21.539⁎⁎⁎ −4.642⁎⁎⁎ −7.687⁎⁎⁎ −4.021⁎⁎⁎ −4.944⁎⁎⁎ −6.710⁎⁎⁎

51 −30.311⁎⁎⁎ −9.318⁎⁎⁎ −8.491⁎⁎⁎ −6.827⁎⁎⁎ −4.941⁎⁎⁎ −6.356⁎⁎⁎

52 −15.035⁎⁎⁎ −18.868⁎⁎⁎ −11.468⁎⁎⁎ −6.333⁎⁎⁎ −6.151⁎⁎⁎ −10.701⁎⁎⁎

53 −14.801⁎⁎⁎ −9.846⁎⁎⁎ −18.299⁎⁎⁎ −5.486⁎⁎⁎ −8.785⁎⁎⁎ −8.494⁎⁎⁎

(continued on next page)
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Table A2-1 (continued)

Attractions CTS-LSTM-AM vs
SARIMAX

CTS-LSTM-AM vs
ANN

CTS-LSTM-AM vs
LSTM

CTS-LSTM-AM vs
LSTM-AM

CTS-LSTM-AM vs
CTS-LSTM

CTS-LSTM-AM vs
baseline

54 −51.269⁎⁎⁎ −42.278⁎⁎⁎ −2.177⁎⁎ −1.195 −1.390 −44.715⁎⁎⁎

55 −56.993⁎⁎⁎ −45.571⁎⁎⁎ −1.408 −2.977⁎⁎⁎ −1.280 −28.266⁎⁎⁎

56 −5.339⁎⁎⁎ −9.441⁎⁎⁎ −6.781⁎⁎⁎ −5.377⁎⁎⁎ −1.203 −10.134⁎⁎⁎

57 −17.850⁎⁎⁎ −24.780⁎⁎⁎ −5.447⁎⁎⁎ −4.460⁎⁎⁎ −3.441⁎⁎⁎ −9.591⁎⁎⁎

58 −74.852⁎⁎⁎ −26.202⁎⁎⁎ −11.307⁎⁎⁎ −6.494⁎⁎⁎ −3.815⁎⁎⁎ −68.800⁎⁎⁎

59 −17.306⁎⁎⁎ −11.082⁎⁎⁎ −7.757⁎⁎⁎ −4.979⁎⁎⁎ −2.069⁎⁎ −4.436⁎⁎⁎

60 −6.477⁎⁎⁎ −17.043⁎⁎⁎ −4.528⁎⁎⁎ −6.331⁎⁎⁎ −1.266 −18.875⁎⁎⁎

61 −35.204⁎⁎⁎ −16.205⁎⁎⁎ −8.755⁎⁎⁎ −6.827⁎⁎⁎ −18.327⁎⁎⁎ −5.626⁎⁎⁎

62 −27.316⁎⁎⁎ −25.072⁎⁎⁎ −5.712⁎⁎⁎ −5.975⁎⁎⁎ −0.137 −4.568⁎⁎⁎

63 −53.492⁎⁎⁎ −52.730⁎⁎⁎ −2.896⁎⁎⁎ −3.834⁎⁎⁎ −1.074 −40.461⁎⁎⁎

64 −38.905⁎⁎⁎ −10.617⁎⁎⁎ −2.995⁎⁎⁎ −2.251⁎⁎⁎ −1.796⁎ −33.606⁎⁎⁎

65 −32.177⁎⁎⁎ −8.196⁎⁎⁎ −5.642⁎⁎⁎ −4.403⁎⁎⁎ −4.861⁎⁎⁎ −10.521⁎⁎⁎

66 −20.775⁎⁎⁎ −15.087⁎⁎⁎ −7.980⁎⁎⁎ −6.827⁎⁎⁎ −3.607⁎⁎⁎ −12.500⁎⁎⁎

67 −18.901⁎⁎⁎ −7.935⁎⁎⁎ −8.731⁎⁎⁎ −6.697⁎⁎⁎ −3.781⁎⁎⁎ −7.645⁎⁎⁎

68 −17.197⁎⁎⁎ −10.474⁎⁎⁎ −8.076⁎⁎⁎ −6.843⁎⁎⁎ −10.713⁎⁎⁎ −8.369⁎⁎⁎

69 −14.165⁎⁎⁎ −11.902⁎⁎⁎ −7.253⁎⁎⁎ −6.072⁎⁎⁎ −1.903⁎ −12.477⁎⁎⁎

70 −49.943⁎⁎⁎ −11.184⁎⁎⁎ −8.755⁎⁎⁎ −7.437⁎⁎⁎ −4.738⁎⁎⁎ −5.587⁎⁎⁎

71 −28.851⁎⁎⁎ −30.941⁎⁎⁎ −4.826⁎⁎⁎ −5.307⁎⁎⁎ −0.396 −6.292⁎⁎⁎

72 −43.707⁎⁎⁎ −41.498⁎⁎⁎ −2.770⁎⁎ −3.302⁎⁎⁎ −4.134⁎⁎⁎ −5.011⁎⁎⁎

73 −12.625⁎⁎⁎ −16.122⁎⁎⁎ −5.566⁎⁎⁎ −7.814⁎⁎⁎ −7.285⁎⁎⁎ −13.394⁎⁎⁎

74 −19.917⁎⁎⁎ −8.568⁎⁎⁎ −8.445⁎⁎⁎ −5.482⁎⁎⁎ −6.752⁎⁎⁎ −8.734⁎⁎⁎

75 −59.162⁎⁎⁎ −15.477⁎⁎⁎ −8.727⁎⁎⁎ −8.031⁎⁎⁎ −13.465⁎⁎⁎ −11.353⁎⁎⁎

76 −17.376⁎⁎⁎ −20.676⁎⁎⁎ −8.755⁎⁎⁎ −6.234⁎⁎⁎ −13.311⁎⁎⁎ −12.987⁎⁎⁎

77 −9.375⁎⁎⁎ −8.672⁎⁎⁎ −8.424⁎⁎⁎ −6.625⁎⁎⁎ −4.888⁎⁎⁎ −6.356⁎⁎⁎yy

⁎⁎⁎ Significant at 1%.
⁎⁎ Significant at 5%.
⁎ Significant at 10%.
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